/* * QR Code generator library (compiled from TypeScript) * * Copyright (c) 2019 Project Nayuki. (MIT License) * https://www.nayuki.io/page/qr-code-generator-library * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * - The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * - The Software is provided "as is", without warranty of any kind, express or * implied, including but not limited to the warranties of merchantability, * fitness for a particular purpose and noninfringement. In no event shall the * authors or copyright holders be liable for any claim, damages or other * liability, whether in an action of contract, tort or otherwise, arising from, * out of or in connection with the Software or the use or other dealings in the * Software. */ "use strict"; var qrcodegen; (function (qrcodegen) { /*---- QR Code symbol class ----*/ /* * A QR Code symbol, which is a type of two-dimension barcode. * Invented by Denso Wave and described in the ISO/IEC 18004 standard. * Instances of this class represent an immutable square grid of black and white cells. * The class provides static factory functions to create a QR Code from text or binary data. * The class covers the QR Code Model 2 specification, supporting all versions (sizes) * from 1 to 40, all 4 error correction levels, and 4 character encoding modes. * * Ways to create a QR Code object: * - High level: Take the payload data and call QrCode.encodeText() or QrCode.encodeBinary(). * - Mid level: Custom-make the list of segments and call QrCode.encodeSegments(). * - Low level: Custom-make the array of data codeword bytes (including * segment headers and final padding, excluding error correction codewords), * supply the appropriate version number, and call the QrCode() constructor. * (Note that all ways require supplying the desired error correction level.) */ var QrCode = /** @class */ (function () { /*-- Constructor (low level) and fields --*/ // Creates a new QR Code with the given version number, // error correction level, data codeword bytes, and mask number. // This is a low-level API that most users should not use directly. // A mid-level API is the encodeSegments() function. function QrCode( // The version number of this QR Code, which is between 1 and 40 (inclusive). // This determines the size of this barcode. version, // The error correction level used in this QR Code. errorCorrectionLevel, dataCodewords, // The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive). // Even if a QR Code is created with automatic masking requested (mask = -1), // the resulting object still has a mask value between 0 and 7. mask) { this.version = version; this.errorCorrectionLevel = errorCorrectionLevel; this.mask = mask; // The modules of this QR Code (false = white, true = black). // Immutable after constructor finishes. Accessed through getModule(). this.modules = []; // Indicates function modules that are not subjected to masking. Discarded when constructor finishes. this.isFunction = []; // Check scalar arguments if (version < QrCode.MIN_VERSION || version > QrCode.MAX_VERSION) throw "Version value out of range"; if (mask < -1 || mask > 7) throw "Mask value out of range"; this.size = version * 4 + 17; // Initialize both grids to be size*size arrays of Boolean false var row = []; for (var i = 0; i < this.size; i++) row.push(false); for (var i = 0; i < this.size; i++) { this.modules.push(row.slice()); // Initially all white this.isFunction.push(row.slice()); } // Compute ECC, draw modules this.drawFunctionPatterns(); var allCodewords = this.addEccAndInterleave(dataCodewords); this.drawCodewords(allCodewords); // Do masking if (mask == -1) { // Automatically choose best mask var minPenalty = 1000000000; for (var i = 0; i < 8; i++) { this.applyMask(i); this.drawFormatBits(i); var penalty = this.getPenaltyScore(); if (penalty < minPenalty) { mask = i; minPenalty = penalty; } this.applyMask(i); // Undoes the mask due to XOR } } if (mask < 0 || mask > 7) throw "Assertion error"; this.mask = mask; this.applyMask(mask); // Apply the final choice of mask this.drawFormatBits(mask); // Overwrite old format bits this.isFunction = []; } /*-- Static factory functions (high level) --*/ // Returns a QR Code representing the given Unicode text string at the given error correction level. // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer // Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the // ecl argument if it can be done without increasing the version. QrCode.encodeText = function (text, ecl) { var segs = qrcodegen.QrSegment.makeSegments(text); return QrCode.encodeSegments(segs, ecl); }; // Returns a QR Code representing the given binary data at the given error correction level. // This function always encodes using the binary segment mode, not any text mode. The maximum number of // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. QrCode.encodeBinary = function (data, ecl) { var seg = qrcodegen.QrSegment.makeBytes(data); return QrCode.encodeSegments([seg], ecl); }; /*-- Static factory functions (mid level) --*/ // Returns a QR Code representing the given segments with the given encoding parameters. // The smallest possible QR Code version within the given range is automatically // chosen for the output. Iff boostEcl is true, then the ECC level of the result // may be higher than the ecl argument if it can be done without increasing the // version. The mask number is either between 0 to 7 (inclusive) to force that // mask, or -1 to automatically choose an appropriate mask (which may be slow). // This function allows the user to create a custom sequence of segments that switches // between modes (such as alphanumeric and byte) to encode text in less space. // This is a mid-level API; the high-level API is encodeText() and encodeBinary(). QrCode.encodeSegments = function (segs, ecl, minVersion, maxVersion, mask, boostEcl) { if (minVersion === void 0) { minVersion = 1; } if (maxVersion === void 0) { maxVersion = 40; } if (mask === void 0) { mask = -1; } if (boostEcl === void 0) { boostEcl = true; } if (!(QrCode.MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= QrCode.MAX_VERSION) || mask < -1 || mask > 7) throw "Invalid value"; // Find the minimal version number to use var version; var dataUsedBits; for (version = minVersion;; version++) { var dataCapacityBits_1 = QrCode.getNumDataCodewords(version, ecl) * 8; // Number of data bits available var usedBits = QrSegment.getTotalBits(segs, version); if (usedBits <= dataCapacityBits_1) { dataUsedBits = usedBits; break; // This version number is found to be suitable } if (version >= maxVersion) // All versions in the range could not fit the given data throw "Data too long"; } // Increase the error correction level while the data still fits in the current version number for (var _i = 0, _a = [QrCode.Ecc.MEDIUM, QrCode.Ecc.QUARTILE, QrCode.Ecc.HIGH]; _i < _a.length; _i++) { // From low to high var newEcl = _a[_i]; if (boostEcl && dataUsedBits <= QrCode.getNumDataCodewords(version, newEcl) * 8) ecl = newEcl; } // Concatenate all segments to create the data bit string var bb = []; for (var _b = 0, segs_1 = segs; _b < segs_1.length; _b++) { var seg = segs_1[_b]; appendBits(seg.mode.modeBits, 4, bb); appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb); for (var _c = 0, _d = seg.getData(); _c < _d.length; _c++) { var b = _d[_c]; bb.push(b); } } if (bb.length != dataUsedBits) throw "Assertion error"; // Add terminator and pad up to a byte if applicable var dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8; if (bb.length > dataCapacityBits) throw "Assertion error"; appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb); appendBits(0, (8 - bb.length % 8) % 8, bb); if (bb.length % 8 != 0) throw "Assertion error"; // Pad with alternating bytes until data capacity is reached for (var padByte = 0xEC; bb.length < dataCapacityBits; padByte ^= 0xEC ^ 0x11) appendBits(padByte, 8, bb); // Pack bits into bytes in big endian var dataCodewords = []; while (dataCodewords.length * 8 < bb.length) dataCodewords.push(0); bb.forEach(function (b, i) { return dataCodewords[i >>> 3] |= b << (7 - (i & 7)); }); // Create the QR Code object return new QrCode(version, ecl, dataCodewords, mask); }; /*-- Accessor methods --*/ // Returns the color of the module (pixel) at the given coordinates, which is false // for white or true for black. The top left corner has the coordinates (x=0, y=0). // If the given coordinates are out of bounds, then false (white) is returned. QrCode.prototype.getModule = function (x, y) { return 0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x]; }; /*-- Public instance methods --*/ // Draws this QR Code, with the given module scale and border modules, onto the given HTML // canvas element. The canvas's width and height is resized to (this.size + border * 2) * scale. // The drawn image is be purely black and white, and fully opaque. // The scale must be a positive integer and the border must be a non-negative integer. QrCode.prototype.drawCanvas = function (scale, border, canvas) { if (scale <= 0 || border < 0) throw "Value out of range"; var width = (this.size + border * 2) * scale; canvas.width = width; canvas.height = width; var ctx = canvas.getContext("2d"); for (var y = -border; y < this.size + border; y++) { for (var x = -border; x < this.size + border; x++) { ctx.fillStyle = this.getModule(x, y) ? "#000000" : "#FFFFFF"; ctx.fillRect((x + border) * scale, (y + border) * scale, scale, scale); } } }; // Returns a string of SVG code for an image depicting this QR Code, with the given number // of border modules. The string always uses Unix newlines (\n), regardless of the platform. QrCode.prototype.toSvgString = function (border) { if (border < 0) throw "Border must be non-negative"; var parts = []; for (var y = 0; y < this.size; y++) { for (var x = 0; x < this.size; x++) { if (this.getModule(x, y)) parts.push("M" + (x + border) + "," + (y + border) + "h1v1h-1z"); } } return "\n\n\n\t\n\t\n\n"; }; /*-- Private helper methods for constructor: Drawing function modules --*/ // Reads this object's version field, and draws and marks all function modules. QrCode.prototype.drawFunctionPatterns = function () { // Draw horizontal and vertical timing patterns for (var i = 0; i < this.size; i++) { this.setFunctionModule(6, i, i % 2 == 0); this.setFunctionModule(i, 6, i % 2 == 0); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) this.drawFinderPattern(3, 3); this.drawFinderPattern(this.size - 4, 3); this.drawFinderPattern(3, this.size - 4); // Draw numerous alignment patterns var alignPatPos = this.getAlignmentPatternPositions(); var numAlign = alignPatPos.length; for (var i = 0; i < numAlign; i++) { for (var j = 0; j < numAlign; j++) { // Don't draw on the three finder corners if (!(i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0)) this.drawAlignmentPattern(alignPatPos[i], alignPatPos[j]); } } // Draw configuration data this.drawFormatBits(0); // Dummy mask value; overwritten later in the constructor this.drawVersion(); }; // Draws two copies of the format bits (with its own error correction code) // based on the given mask and this object's error correction level field. QrCode.prototype.drawFormatBits = function (mask) { // Calculate error correction code and pack bits var data = this.errorCorrectionLevel.formatBits << 3 | mask; // errCorrLvl is uint2, mask is uint3 var rem = data; for (var i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >>> 9) * 0x537); var bits = (data << 10 | rem) ^ 0x5412; // uint15 if (bits >>> 15 != 0) throw "Assertion error"; // Draw first copy for (var i = 0; i <= 5; i++) this.setFunctionModule(8, i, getBit(bits, i)); this.setFunctionModule(8, 7, getBit(bits, 6)); this.setFunctionModule(8, 8, getBit(bits, 7)); this.setFunctionModule(7, 8, getBit(bits, 8)); for (var i = 9; i < 15; i++) this.setFunctionModule(14 - i, 8, getBit(bits, i)); // Draw second copy for (var i = 0; i < 8; i++) this.setFunctionModule(this.size - 1 - i, 8, getBit(bits, i)); for (var i = 8; i < 15; i++) this.setFunctionModule(8, this.size - 15 + i, getBit(bits, i)); this.setFunctionModule(8, this.size - 8, true); // Always black }; // Draws two copies of the version bits (with its own error correction code), // based on this object's version field, iff 7 <= version <= 40. QrCode.prototype.drawVersion = function () { if (this.version < 7) return; // Calculate error correction code and pack bits var rem = this.version; // version is uint6, in the range [7, 40] for (var i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >>> 11) * 0x1F25); var bits = this.version << 12 | rem; // uint18 if (bits >>> 18 != 0) throw "Assertion error"; // Draw two copies for (var i = 0; i < 18; i++) { var color = getBit(bits, i); var a = this.size - 11 + i % 3; var b = Math.floor(i / 3); this.setFunctionModule(a, b, color); this.setFunctionModule(b, a, color); } }; // Draws a 9*9 finder pattern including the border separator, // with the center module at (x, y). Modules can be out of bounds. QrCode.prototype.drawFinderPattern = function (x, y) { for (var dy = -4; dy <= 4; dy++) { for (var dx = -4; dx <= 4; dx++) { var dist = Math.max(Math.abs(dx), Math.abs(dy)); // Chebyshev/infinity norm var xx = x + dx; var yy = y + dy; if (0 <= xx && xx < this.size && 0 <= yy && yy < this.size) this.setFunctionModule(xx, yy, dist != 2 && dist != 4); } } }; // Draws a 5*5 alignment pattern, with the center module // at (x, y). All modules must be in bounds. QrCode.prototype.drawAlignmentPattern = function (x, y) { for (var dy = -2; dy <= 2; dy++) { for (var dx = -2; dx <= 2; dx++) this.setFunctionModule(x + dx, y + dy, Math.max(Math.abs(dx), Math.abs(dy)) != 1); } }; // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in bounds. QrCode.prototype.setFunctionModule = function (x, y, isBlack) { this.modules[y][x] = isBlack; this.isFunction[y][x] = true; }; /*-- Private helper methods for constructor: Codewords and masking --*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. QrCode.prototype.addEccAndInterleave = function (data) { var ver = this.version; var ecl = this.errorCorrectionLevel; if (data.length != QrCode.getNumDataCodewords(ver, ecl)) throw "Invalid argument"; // Calculate parameter numbers var numBlocks = QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; var blockEccLen = QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver]; var rawCodewords = Math.floor(QrCode.getNumRawDataModules(ver) / 8); var numShortBlocks = numBlocks - rawCodewords % numBlocks; var shortBlockLen = Math.floor(rawCodewords / numBlocks); // Split data into blocks and append ECC to each block var blocks = []; var rsDiv = QrCode.reedSolomonComputeDivisor(blockEccLen); for (var i = 0, k = 0; i < numBlocks; i++) { var dat = data.slice(k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1)); k += dat.length; var ecc = QrCode.reedSolomonComputeRemainder(dat, rsDiv); if (i < numShortBlocks) dat.push(0); blocks.push(dat.concat(ecc)); } // Interleave (not concatenate) the bytes from every block into a single sequence var result = []; for (var i = 0; i < blocks[0].length; i++) { for (var j = 0; j < blocks.length; j++) { // Skip the padding byte in short blocks if (i != shortBlockLen - blockEccLen || j >= numShortBlocks) result.push(blocks[j][i]); } } if (result.length != rawCodewords) throw "Assertion error"; return result; }; // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code. Function modules need to be marked off before this is called. QrCode.prototype.drawCodewords = function (data) { if (data.length != Math.floor(QrCode.getNumRawDataModules(this.version) / 8)) throw "Invalid argument"; var i = 0; // Bit index into the data // Do the funny zigzag scan for (var right = this.size - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) right = 5; for (var vert = 0; vert < this.size; vert++) { // Vertical counter for (var j = 0; j < 2; j++) { var x = right - j; // Actual x coordinate var upward = ((right + 1) & 2) == 0; var y = upward ? this.size - 1 - vert : vert; // Actual y coordinate if (!this.isFunction[y][x] && i < data.length * 8) { this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7)); i++; } // If this QR Code has any remainder bits (0 to 7), they were assigned as // 0/false/white by the constructor and are left unchanged by this method } } } if (i != data.length * 8) throw "Assertion error"; }; // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling applyMask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code needs exactly one (not zero, two, etc.) mask applied. QrCode.prototype.applyMask = function (mask) { if (mask < 0 || mask > 7) throw "Mask value out of range"; for (var y = 0; y < this.size; y++) { for (var x = 0; x < this.size; x++) { var invert = void 0; switch (mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: throw "Assertion error"; } if (!this.isFunction[y][x] && invert) this.modules[y][x] = !this.modules[y][x]; } } }; // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. QrCode.prototype.getPenaltyScore = function () { var result = 0; // Adjacent modules in row having same color, and finder-like patterns for (var y = 0; y < this.size; y++) { var runColor = false; var runX = 0; var runHistory = [0, 0, 0, 0, 0, 0, 0]; var padRun = this.size; for (var x = 0; x < this.size; x++) { if (this.modules[y][x] == runColor) { runX++; if (runX == 5) result += QrCode.PENALTY_N1; else if (runX > 5) result++; } else { QrCode.finderPenaltyAddHistory(runX + padRun, runHistory); padRun = 0; if (!runColor) result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3; runColor = this.modules[y][x]; runX = 1; } } result += this.finderPenaltyTerminateAndCount(runColor, runX + padRun, runHistory) * QrCode.PENALTY_N3; } // Adjacent modules in column having same color, and finder-like patterns for (var x = 0; x < this.size; x++) { var runColor = false; var runY = 0; var runHistory = [0, 0, 0, 0, 0, 0, 0]; var padRun = this.size; for (var y = 0; y < this.size; y++) { if (this.modules[y][x] == runColor) { runY++; if (runY == 5) result += QrCode.PENALTY_N1; else if (runY > 5) result++; } else { QrCode.finderPenaltyAddHistory(runY + padRun, runHistory); padRun = 0; if (!runColor) result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3; runColor = this.modules[y][x]; runY = 1; } } result += this.finderPenaltyTerminateAndCount(runColor, runY + padRun, runHistory) * QrCode.PENALTY_N3; } // 2*2 blocks of modules having same color for (var y = 0; y < this.size - 1; y++) { for (var x = 0; x < this.size - 1; x++) { var color = this.modules[y][x]; if (color == this.modules[y][x + 1] && color == this.modules[y + 1][x] && color == this.modules[y + 1][x + 1]) result += QrCode.PENALTY_N2; } } // Balance of black and white modules var black = 0; for (var _i = 0, _a = this.modules; _i < _a.length; _i++) { var row = _a[_i]; for (var _b = 0, row_1 = row; _b < row_1.length; _b++) { var color = row_1[_b]; if (color) black++; } } var total = this.size * this.size; // Note that size is odd, so black/total != 1/2 // Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)% var k = Math.ceil(Math.abs(black * 20 - total * 10) / total) - 1; result += k * QrCode.PENALTY_N4; return result; }; /*-- Private helper functions --*/ // Returns an ascending list of positions of alignment patterns for this version number. // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of integers. QrCode.prototype.getAlignmentPatternPositions = function () { if (this.version == 1) return []; else { var numAlign = Math.floor(this.version / 7) + 2; var step = (this.version == 32) ? 26 : Math.ceil((this.size - 13) / (numAlign * 2 - 2)) * 2; var result = [6]; for (var pos = this.size - 7; result.length < numAlign; pos -= step) result.splice(1, 0, pos); return result; } }; // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. QrCode.getNumRawDataModules = function (ver) { if (ver < QrCode.MIN_VERSION || ver > QrCode.MAX_VERSION) throw "Version number out of range"; var result = (16 * ver + 128) * ver + 64; if (ver >= 2) { var numAlign = Math.floor(ver / 7) + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (ver >= 7) result -= 36; } return result; }; // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. QrCode.getNumDataCodewords = function (ver, ecl) { return Math.floor(QrCode.getNumRawDataModules(ver) / 8) - QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver] * QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; }; // Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be // implemented as a lookup table over all possible parameter values, instead of as an algorithm. QrCode.reedSolomonComputeDivisor = function (degree) { if (degree < 1 || degree > 255) throw "Degree out of range"; // Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. // For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93]. var result = []; for (var i = 0; i < degree - 1; i++) result.push(0); result.push(1); // Start off with the monomial x^0 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // and drop the highest monomial term which is always 1x^degree. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). var root = 1; for (var i = 0; i < degree; i++) { // Multiply the current product by (x - r^i) for (var j = 0; j < result.length; j++) { result[j] = QrCode.reedSolomonMultiply(result[j], root); if (j + 1 < result.length) result[j] ^= result[j + 1]; } root = QrCode.reedSolomonMultiply(root, 0x02); } return result; }; // Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials. QrCode.reedSolomonComputeRemainder = function (data, divisor) { var result = divisor.map(function (_) { return 0; }); var _loop_1 = function (b) { var factor = b ^ result.shift(); result.push(0); divisor.forEach(function (coef, i) { return result[i] ^= QrCode.reedSolomonMultiply(coef, factor); }); }; for (var _i = 0, data_1 = data; _i < data_1.length; _i++) { var b = data_1[_i]; _loop_1(b); } return result; }; // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. QrCode.reedSolomonMultiply = function (x, y) { if (x >>> 8 != 0 || y >>> 8 != 0) throw "Byte out of range"; // Russian peasant multiplication var z = 0; for (var i = 7; i >= 0; i--) { z = (z << 1) ^ ((z >>> 7) * 0x11D); z ^= ((y >>> i) & 1) * x; } if (z >>> 8 != 0) throw "Assertion error"; return z; }; // Can only be called immediately after a white run is added, and // returns either 0, 1, or 2. A helper function for getPenaltyScore(). QrCode.prototype.finderPenaltyCountPatterns = function (runHistory) { var n = runHistory[1]; if (n > this.size * 3) throw "Assertion error"; var core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n; return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0); }; // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore(). QrCode.prototype.finderPenaltyTerminateAndCount = function (currentRunColor, currentRunLength, runHistory) { if (currentRunColor) { // Terminate black run QrCode.finderPenaltyAddHistory(currentRunLength, runHistory); currentRunLength = 0; } currentRunLength += this.size; // Add white border to final run QrCode.finderPenaltyAddHistory(currentRunLength, runHistory); return this.finderPenaltyCountPatterns(runHistory); }; // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore(). QrCode.finderPenaltyAddHistory = function (currentRunLength, runHistory) { runHistory.pop(); runHistory.unshift(currentRunLength); }; /*-- Constants and tables --*/ // The minimum version number supported in the QR Code Model 2 standard. QrCode.MIN_VERSION = 1; // The maximum version number supported in the QR Code Model 2 standard. QrCode.MAX_VERSION = 40; // For use in getPenaltyScore(), when evaluating which mask is best. QrCode.PENALTY_N1 = 3; QrCode.PENALTY_N2 = 3; QrCode.PENALTY_N3 = 40; QrCode.PENALTY_N4 = 10; QrCode.ECC_CODEWORDS_PER_BLOCK = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], ]; QrCode.NUM_ERROR_CORRECTION_BLOCKS = [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], ]; return QrCode; }()); qrcodegen.QrCode = QrCode; // Appends the given number of low-order bits of the given value // to the given buffer. Requires 0 <= len <= 31 and 0 <= val < 2^len. function appendBits(val, len, bb) { if (len < 0 || len > 31 || val >>> len != 0) throw "Value out of range"; for (var i = len - 1; i >= 0; i--) // Append bit by bit bb.push((val >>> i) & 1); } // Returns true iff the i'th bit of x is set to 1. function getBit(x, i) { return ((x >>> i) & 1) != 0; } /*---- Data segment class ----*/ /* * A segment of character/binary/control data in a QR Code symbol. * Instances of this class are immutable. * The mid-level way to create a segment is to take the payload data * and call a static factory function such as QrSegment.makeNumeric(). * The low-level way to create a segment is to custom-make the bit buffer * and call the QrSegment() constructor with appropriate values. * This segment class imposes no length restrictions, but QR Codes have restrictions. * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. * Any segment longer than this is meaningless for the purpose of generating QR Codes. */ var QrSegment = /** @class */ (function () { /*-- Constructor (low level) and fields --*/ // Creates a new QR Code segment with the given attributes and data. // The character count (numChars) must agree with the mode and the bit buffer length, // but the constraint isn't checked. The given bit buffer is cloned and stored. function QrSegment( // The mode indicator of this segment. mode, // The length of this segment's unencoded data. Measured in characters for // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. // Always zero or positive. Not the same as the data's bit length. numChars, // The data bits of this segment. Accessed through getData(). bitData) { this.mode = mode; this.numChars = numChars; this.bitData = bitData; if (numChars < 0) throw "Invalid argument"; this.bitData = bitData.slice(); // Make defensive copy } /*-- Static factory functions (mid level) --*/ // Returns a segment representing the given binary data encoded in // byte mode. All input byte arrays are acceptable. Any text string // can be converted to UTF-8 bytes and encoded as a byte mode segment. QrSegment.makeBytes = function (data) { var bb = []; for (var _i = 0, data_2 = data; _i < data_2.length; _i++) { var b = data_2[_i]; appendBits(b, 8, bb); } return new QrSegment(QrSegment.Mode.BYTE, data.length, bb); }; // Returns a segment representing the given string of decimal digits encoded in numeric mode. QrSegment.makeNumeric = function (digits) { if (!this.NUMERIC_REGEX.test(digits)) throw "String contains non-numeric characters"; var bb = []; for (var i = 0; i < digits.length;) { // Consume up to 3 digits per iteration var n = Math.min(digits.length - i, 3); appendBits(parseInt(digits.substr(i, n), 10), n * 3 + 1, bb); i += n; } return new QrSegment(QrSegment.Mode.NUMERIC, digits.length, bb); }; // Returns a segment representing the given text string encoded in alphanumeric mode. // The characters allowed are: 0 to 9, A to Z (uppercase only), space, // dollar, percent, asterisk, plus, hyphen, period, slash, colon. QrSegment.makeAlphanumeric = function (text) { if (!this.ALPHANUMERIC_REGEX.test(text)) throw "String contains unencodable characters in alphanumeric mode"; var bb = []; var i; for (i = 0; i + 2 <= text.length; i += 2) { // Process groups of 2 var temp = QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45; temp += QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1)); appendBits(temp, 11, bb); } if (i < text.length) // 1 character remaining appendBits(QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)), 6, bb); return new QrSegment(QrSegment.Mode.ALPHANUMERIC, text.length, bb); }; // Returns a new mutable list of zero or more segments to represent the given Unicode text string. // The result may use various segment modes and switch modes to optimize the length of the bit stream. QrSegment.makeSegments = function (text) { // Select the most efficient segment encoding automatically if (text == "") return []; else if (this.NUMERIC_REGEX.test(text)) return [QrSegment.makeNumeric(text)]; else if (this.ALPHANUMERIC_REGEX.test(text)) return [QrSegment.makeAlphanumeric(text)]; else return [QrSegment.makeBytes(QrSegment.toUtf8ByteArray(text))]; }; // Returns a segment representing an Extended Channel Interpretation // (ECI) designator with the given assignment value. QrSegment.makeEci = function (assignVal) { var bb = []; if (assignVal < 0) throw "ECI assignment value out of range"; else if (assignVal < (1 << 7)) appendBits(assignVal, 8, bb); else if (assignVal < (1 << 14)) { appendBits(2, 2, bb); appendBits(assignVal, 14, bb); } else if (assignVal < 1000000) { appendBits(6, 3, bb); appendBits(assignVal, 21, bb); } else throw "ECI assignment value out of range"; return new QrSegment(QrSegment.Mode.ECI, 0, bb); }; /*-- Methods --*/ // Returns a new copy of the data bits of this segment. QrSegment.prototype.getData = function () { return this.bitData.slice(); // Make defensive copy }; // (Package-private) Calculates and returns the number of bits needed to encode the given segments at // the given version. The result is infinity if a segment has too many characters to fit its length field. QrSegment.getTotalBits = function (segs, version) { var result = 0; for (var _i = 0, segs_2 = segs; _i < segs_2.length; _i++) { var seg = segs_2[_i]; var ccbits = seg.mode.numCharCountBits(version); if (seg.numChars >= (1 << ccbits)) return Infinity; // The segment's length doesn't fit the field's bit width result += 4 + ccbits + seg.bitData.length; } return result; }; // Returns a new array of bytes representing the given string encoded in UTF-8. QrSegment.toUtf8ByteArray = function (str) { str = encodeURI(str); var result = []; for (var i = 0; i < str.length; i++) { if (str.charAt(i) != "%") result.push(str.charCodeAt(i)); else { result.push(parseInt(str.substr(i + 1, 2), 16)); i += 2; } } return result; }; /*-- Constants --*/ // Describes precisely all strings that are encodable in numeric mode. To test // whether a string s is encodable: let ok: boolean = NUMERIC_REGEX.test(s); // A string is encodable iff each character is in the range 0 to 9. QrSegment.NUMERIC_REGEX = /^[0-9]*$/; // Describes precisely all strings that are encodable in alphanumeric mode. To test // whether a string s is encodable: let ok: boolean = ALPHANUMERIC_REGEX.test(s); // A string is encodable iff each character is in the following set: 0 to 9, A to Z // (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. QrSegment.ALPHANUMERIC_REGEX = /^[A-Z0-9 $%*+.\/:-]*$/; // The set of all legal characters in alphanumeric mode, // where each character value maps to the index in the string. QrSegment.ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"; return QrSegment; }()); qrcodegen.QrSegment = QrSegment; })(qrcodegen || (qrcodegen = {})); /*---- Public helper enumeration ----*/ (function (qrcodegen) { var QrCode; (function (QrCode) { /* * The error correction level in a QR Code symbol. Immutable. */ var Ecc = /** @class */ (function () { /*-- Constructor and fields --*/ function Ecc( // In the range 0 to 3 (unsigned 2-bit integer). ordinal, // (Package-private) In the range 0 to 3 (unsigned 2-bit integer). formatBits) { this.ordinal = ordinal; this.formatBits = formatBits; } /*-- Constants --*/ Ecc.LOW = new Ecc(0, 1); // The QR Code can tolerate about 7% erroneous codewords Ecc.MEDIUM = new Ecc(1, 0); // The QR Code can tolerate about 15% erroneous codewords Ecc.QUARTILE = new Ecc(2, 3); // The QR Code can tolerate about 25% erroneous codewords Ecc.HIGH = new Ecc(3, 2); // The QR Code can tolerate about 30% erroneous codewords return Ecc; }()); QrCode.Ecc = Ecc; })(QrCode = qrcodegen.QrCode || (qrcodegen.QrCode = {})); })(qrcodegen || (qrcodegen = {})); /*---- Public helper enumeration ----*/ (function (qrcodegen) { var QrSegment; (function (QrSegment) { /* * Describes how a segment's data bits are interpreted. Immutable. */ var Mode = /** @class */ (function () { /*-- Constructor and fields --*/ function Mode( // The mode indicator bits, which is a uint4 value (range 0 to 15). modeBits, // Number of character count bits for three different version ranges. numBitsCharCount) { this.modeBits = modeBits; this.numBitsCharCount = numBitsCharCount; } /*-- Method --*/ // (Package-private) Returns the bit width of the character count field for a segment in // this mode in a QR Code at the given version number. The result is in the range [0, 16]. Mode.prototype.numCharCountBits = function (ver) { return this.numBitsCharCount[Math.floor((ver + 7) / 17)]; }; /*-- Constants --*/ Mode.NUMERIC = new Mode(0x1, [10, 12, 14]); Mode.ALPHANUMERIC = new Mode(0x2, [9, 11, 13]); Mode.BYTE = new Mode(0x4, [8, 16, 16]); Mode.KANJI = new Mode(0x8, [8, 10, 12]); Mode.ECI = new Mode(0x7, [0, 0, 0]); return Mode; }()); QrSegment.Mode = Mode; })(QrSegment = qrcodegen.QrSegment || (qrcodegen.QrSegment = {})); })(qrcodegen || (qrcodegen = {}));